

SERDP PP1151 - ID Plasma Spray

HCAT Program Review Cocoa Beach, Fl December 2000

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate or mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE DEC 2000	2. REPORT TYPE			3. DATES COVERED 00-00-2000 to 00-00-2000			
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER					
ID Plasma Spray		5b. GRANT NUMBER					
			5c. PROGRAM ELEMENT NUMBER				
6. AUTHOR(S)				5d. PROJECT NUMBER			
					5e. TASK NUMBER		
					5f. WORK UNIT NUMBER		
	ZATION NAME(S) AND AE 7 Group,1590 S. Mil , 60048	` /		8. PERFORMING REPORT NUMB	G ORGANIZATION ER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)			
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited					
	otes of Hard Chrome Pla onsored by SERDP/		ew Meeting, Dece	ember 13-14,	2000, Cape		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 23	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Technical objective

To demonstrate proof-of-principle for the plasma spray method:

- Improve ability to spray in constricted areas; miniature gun and process modifications
- Understand limits, improve coating performance and reliability
- Improve underlying science and technology of plasma spray
- Improve coating properties by use of small and nanoagglomerate particles
- Feed results into follow-on dem/val as soon as possible for use in new weapons platforms (e.g. JSF) and maintenance of existing systems

Technical background

- HVOF thermal spray coatings (primarily WC-Co) on ODs have proved superior to electrolytic hard chrome
 - Less wear and fatigue "lifetime coatings" in some cases
 - Lower life-cycle cost
- Wide variety of wear-resistant materials to meet diverse needs
 - WC-Co meets most needs
 - Tribaloy and stainless steel for lower wear applications
- But HVOF cannot be used in IDs < about 11"</p>
- Use of plasma and arc spray growing for IDs
 - Not yet developed enough for high pressure landing gear hydraulics or for IDs < 3" (e.g. actuators)

Team

Technical Approach - Summary of Technology Development approach

	Praxair-TAFA	Praxair Indianapolis	Sulzer Metco	NRC	
Equip-				All guns	
ment			-	Characterize performance – velocity and temperature profiles	
			Sulzer Metco F-100		
			20 kW 4" ID		
		3	≱ ₩		
	Praxair 2700 miniature				
	30kW, 1.5" ID				
			Sulzer Metco F-210		
			12kW, 2.5" ID		
Powder	Standard WC-Co	Tribaloy 400	Standard WC-Co powders	All powders	
	Small particles Nano-agglomerates WC-Co small particles		Nano-agglomerate WC-Co	Optimize spray conditions	
				Consider other materials	
Issues	How small a diameter can we coat? And with what type of powder? Do small particles provide better quality?		Best conditions for large parts – landing gear outer cylinders	Characterize coatings and coated tubes	
			Do nanoparticles give better particles? – OSH issues	Evaluate OSH issues of nanopowders	

Overall plan - technical

Technical background

- Powder particles injected into plasma plume accelerate, heat, soften, splat onto surface
- Typical particle size 50μm
- Typical coating thickness 0.001" 0.020"
- Hardness 1,000 1,500 HV (EHC is 800 - 1,000 HV)
- Coating rate high landing gear inner cylinder OD typically takes 20 min

Technical approach - critical issues

- What is smallest ID we can coat?
 - Smallest gun, standoff, best particles
- Overspray dust incorporation
 - Porosity
 - additional gas flow to remove particles
- Heat removal
 - Overheat component
 - additional gas flow to remove heat
 - minimize plasma power
 - > reduces powder overheating
 - allows smaller particles
 - » less porosity, smoother
- Design internal gas flow to cool and sweep out particles

Specimen Holder Simulating ID - NRC, Montreal

Kb flat bar

Almen strip holder

Pull test stud

Metallographic sample

Wear test

Keith Legg 847-680-9420

Initial testing - NRC

- Initial aim to feel out the process and limitations of standard spray conditions and powders
- 3 WC-17Co powders sprayed with Sulzer Metco F-100 gun
 - Used for larger IDs (>4")
- DPV 2000 spray monitor
 - Measures particle temperature and velocity along spray jet

Operating Ranges SM F-100 gun with 3 WC-Co powders

Spray analysis - Amdry 983 powder

- Large, heavy agglomerates
- Relatively cool
 - Take a long time to heat up
- Relatively low velocity
 - Accelerate slowly in gas jet

BEI

Amdry 983 coating (1)

SEM Cross-section - Backscattered

- Large, heavy particles
 - Lowest velocity particles (slowest acceleration)
 - Lowest temperature (highest thermal mass)
 - Carbides well-defined (not dissolved) because of low T
 - Porous because of low V

Spray analysis - Diamalloy 2005 powder

- Lower density particles
- Higher velocity
 - Rapid acceleration to full speed at nozzle exit
- Heat up more quickly
 - Reach higher temperatures

Spray analysis example - Diamalloy 2006

- Smallest particles
- Highest temperatures and velocities

Diamalloy 2006 coating (3)

- Smallest particles
 - highest velocity and temperature
- Relatively low porosity
- Almost complete carbide dissolution
 - Far too high a particle temperature (Co partially evaporates away)

Summary of particle temperature and velocity data

- Particle T and V vs spray conditions
 - Diamalloy V ~ 120ms⁻¹ for most spray conditions
 - Amdry powder much heavier and slower
 - Smaller particles and higher velocities appear to give lower porosity, as expected
 - Can easily overheat and degrade WC, as expected, so need to control deposition conditions, stand-off etc.
 - Can define allowable ranges of temperature and velocity for different particle sizes and materials

Conclusions from initial NRC study

- Behavior pretty much as expected
- Ideal powder different for different sized guns and different power levels
- Very easy to overheat powder with high-power gun
 - Especially with smaller powders
 - Result is WC dissolution
 - Need to aim for lower power, but with highest possible velocity to minimize porosity

Sulzer Metco initial study

Run Number	Gun Type	Powder	Primary (Ar)	Second- arv (He)	Standoff (inch)	Power (kW)
91011-1	F-100	2005NS	45 SLPM	10 SLPM	1.25"	10.9
91011-2	F-100	2005NS	45 SLPM	20 SLPM	1.25"	11.2
91011-3	F-100	2005NS	45 SLPM	40 SLPM	1.25"	12.3
91011-4	F-100	2005NS	45 SLPM	80 SLPM	1.25"	14.0
91011-5	F-100	2005NS	45 SLPM	160 SLPM	1.25"	15.6
91011-6	F-100	2005NS	45 SLPM	200 SLPM	1.25"	16.3
91013-2	F-210	2005NS	45 SLPM	10 SLPM	1.5"	9.5
91013-3	F-210	2005NS	45 SLPM	20 SLPM	1.5"	10.5
91013-4	F-210	2005NS	45 SLPM	40 SLPM	1.5"	11.7
91013-5	F-210	2005NS	45 SLPM	80 SLPM	1.5"	12.6
91013-6	F-210	2005NS	45 SLPM	160 SLPM	1.5"	14.4

Sulzer Metco initial study

- Run 91011-1
 - low He, low kW
- Porosity 9%
- Hardness 764HV₃₀₀
- Well-defined microstructure
- Optimization proceeding for both guns
 - coordinating with NRC

Diamalloy 2005 + He at NRC Based on Sulzer Metco conditions

- He secondary gas allows
 - Lower T
 - Higher V
 - Good microstructure
- T and V to be measured closer to gun
- Optimization to be done on both guns
 - transfer to Sulzer Metco

Praxair Tribaloy 400 initial testing

- **2700 gun**
- 2" stand-off, 10-42 gpm
 - approx. 0.001"/min on 12" long x 3" ID tube
- Coated in 3" ID tube
- Three powders

Linking Global Technologies with Markets

- -325 mesh (44 μm) baseline and -400 mesh (37 μm) smallest available
- -500 mesh (30 μm)
 - Produced for project
- Porosity greatly improves as go from standard 44 μm to 30 μm powder
- ☐ fine powder harder to feed OWAN TECHNOLOGY GROUP

To be done next

- Measure properties of coatings so far
- Develop parameters and coat ID with 30 μm powder
- Improve powder feed for fine powder

Conclusions so far

- Coating deposition behaves pretty much as expected
 - Have enough power to easily overheat powder with F100 gun
 - However, addition of He reduces T while maintaining V
 - Can make reasonable quality WC-17Co coatings
 - Beginning to make reasonable quality T400 coatings
 - As expected, powder feed more difficult with small powders
 - Can coat at high rate
 - We are now in position to optimize and make samples for process development
- NRC now has sample holder and Praxair, Sulzer Metco guns needed for output characterization and optimization

